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1. Introduction

Mortorious is an art project about death. On average, someone dies in the United States
about every 11 seconds. Of the various causes, the most common are heart disease (one
death every 48 seconds), cancers and tumors (one death every 52 seconds), and accidents
(one death every 3 minutes 3 seconds). To make these and other relative death rates more
tangible, the Burning Man art project Mortorious uses several digital “death counters”
each of which shows the estimated number of deaths that have occurred somewhere in the
United States by a specific cause since the start of the 2019 event.

We want each of the death counters to increment at an appropriate rate, but we also want
to avoid the distraction of unrealistic uniformity. Since a death by heart disease doesn’t
occur exactly every 48 seconds we want the counters to show some apparent randomness.
In the sections that follow, we explain how each of the Mortorious death counters uses a
pseudorandom number generator to avoid masking death’s unpredictability.

2. Modeling Uncorrelated Random Events

Nationwide deaths are, for the most part, uncorrelated and random. Using the simpli-
fying assumption that death rates are not affected by age (our spherical cow 1), we model

Date: May 19, 2019. Updated Table 2 and its Wolfram Alpha expression on November 21, 2021.
1https://en.wikipedia.org/wiki/Spherical_cow
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deaths as a Poisson point process. In a Poisson point process the durations between con-
secutive events (the “interarrival” times T ) are distributed exponentially.2 The probability
density function3 f(T ) of such a distribution is shown in (1) where T = 1

λ
is the mean

interarrival time.

(1) f(T ) =

{

λe−λT T ≥ 0

0 T < 0

In our example of heart disease, T = 48 sec. Then λ = 1
48 .

Now that we have an exponential-distribution probability density function for T , we seek
a source of random numbers that is so distributed.

3. Exponentially Distributed Pseudorandom Number Generators

We can use nearly any programming language to generate a sequence of seemingly ran-
dom numbers that represent the interarrival times of independent, random events. If the
programming language that we are using includes an exponential-distribution pseudoran-
dom number generator (PRNG), then we can use it directly. Python is such a programming
language: use its function expovariate().

However, if our programming language does not directly support an exponential-distribution
PRNG, then we need to construct one. In that case, our solution will take two steps. First
we will need a uniform-distribution PRNG. Second, we will need to convert that genera-
tor’s sequence of uniformly distributed numbers into a sequence of exponentially distributed
numbers that we then can use as inter-death times.

3.1. Starting With Uniformly Distributed Pseudorandom Numbers. Most pro-
gramming languages provide at least one library function that acts as a uniform-distribution
PRNG. Table 1 lists the names of PRNG functions that are available in a few programming
languages.

Table 1. Pseudorandom Number Generators

Language Function Range
C rand() integral value r where 0 ≤ r ≤ RAND_MAX

PHP rand() integral value r where 0 ≤ r ≤ getrandmax()

Java Math.random() real value r where 0 ≤ r < 1
JavaScript Math.random() real value r where 0 ≤ r < 1

One can see from the table that the ranges of various PRNG functions vary. Either the
PRNG function has the practical floating-point range [0, 1), as with Java and JavaScript,
or the function has another range that can be converted into [0, 1). In the case of the C
programming language, the range of the rand() function is integral values ∈ [0, RAND_MAX].

2https://en.wikipedia.org/wiki/Exponential_distribution
3https://en.wikipedia.org/wiki/Exponential_distribution\#Probability_density_function
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Converting this range into [0, 1) requires scaling the rand() function’s result. As long as
the value of RAND_MAX can be held in a variable of type double, we can use rand() in the
computation of a floating-point value u ∈ [0, 1):

double u = rand() / (RAND_MAX + 1.0);

Once we have a uniform-distribution PRNG that generates values u ∈ [0, 1), then it
is straightforward to convert its sequence of numbers into interarrival times that are dis-
tributed exponentially.

3.2. Computing Exponentially Distributed Pseudorandom Numbers. In this and
the following section we present a method of converting a sequence of uniformly distributed
pseudorandom numbers into a sequence of exponentially distributed pseudorandom num-
bers. See Section 4 for derivations.

Given a sequence of numbers u ∈ [0, 1) from a uniform distribution, we can compute
an exponentially distributed sequence of numbers T ∈ [0,∞) with mean T = 1

λ
using the

equation

(2) T = −
1

λ
ln(1− u)

Observe that when u ≈ 1 this equation will generate very large values of T relative to
T . If very large values of T will cause practical concerns, read on.

3.3. Practical Limits: Chopping the Exponential Tail. Inevitably some values of
T ∈ [0,∞) generated by (2) will be quite large. If extreme values of T will cause practical
concerns, there is a method to chop the tail of the exponential distribution but keep the
mean T = 1

λ
. The approach is to choose a new range T ∈ [ a

λ
, b

λ
] using values of a and

b from the table below. Then modify the uniform-distribution PRNG to generate a new
range of numbers u ∈ [ua, ub] = [1−e−a, 1−e−b]. For example, if you are comfortable with
the tail being five times as long as the mean, then use [ua, ub] from the row with b = 5. If
you want to use a value of b that is not in the table, then continue to Section 4.

Table 2. Several (a, b) pairs along with corresponding limits ua and ub for
a uniform-distribution PRNG.

a b ua = 1− e−a ub = 1− e−b

0.0348858 5 0.0342843 0.99326205
0.0150988 6 0.0149854 0.99752125
0.00642431 7 0.00640372 0.99908812
0.00269093 8 0.00268732 0.99966454
0.00111192 9 0.00111131 0.99987659

4.54206 × 10−4 10 4.54102 × 10−4 0.99995460
1.83752 × 10−4 11 1.83736 × 10−4 0.99998330
7.37360 × 10−5 12 7.37333 × 10−5 0.99999386
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Another method to compensate for the shift in the distribution’s mean when chopping
the exponential tail is to reduce the rate value λ. In this case, the target range of T ∈ [0, b

λ
]

includes zero, but a modified rate mλ is used in (3).

(3) T = −
1

mλ
ln(1− u)

Table 3. Several values of b for chopping the tail of an exponential-
distribution PRNG along with values of ub for a uniform-distribution PRNG
and values of m for modifying the rate used in (3).

a b m ua ub = 1− e−mb

0 2.25 0.298517 0 0.489142
0 2.5 0.491973 0 0.707688
0 2.75 0.623616 0 0.820026
0 3 0.716373 0 0.883413
0 4 0.898378 0 0.972498
0 5 0.960201 0 0.991779
0 6 0.983833 0 0.997269
0 7 0.993351 0 0.999045
0 10 0.999544 0 0.9999544
0 20 0.9999999588 0 0.99999999794

4. Derivations

4.1. Exponential Distribution PRNG. To derive these methods, we start with an
observation about the cumulative distribution function (CDF) of a PRNG. The CDF F (T )
for a PRNG returns the fraction of generated numbers that are less than T . For example,
consider the uniform-distribution PRNG that returns values in [0, 1) and whose PDF is
f(T ) = 1. We expect that half of the generated numbers will be less than 0.5, a quarter of
the generated numbers will be less than 0.25, three quarters of the generated numbers will
be less than 0.75, etc. So let’s start with the definition of a CDF, compute the uniform-
distribution PRNG’s CDF, and check.

F (T ) =

∫

T

0
f(T )dx

=

∫

T

0
1dx

= x|T
x=0

= T − 0

F (T ) = T
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Then, as expected, F (0.5) = 0.5, F (0.25) = 0.25, and F (0.75) = 0.75, etc.
Following a similar argument, let’s look at the CDF of our exponential-distribution

PRNG that has a PDF f(T ) = λe−λx:

F (T ) =

∫

T

0
f(T )dx

=

∫

T

0
λe−λxdx

= −e−λx

∣

∣

∣

T

x=0

= −e−λT − (−e0)

= −e−λT + 1

F (T ) = 1− e−λT(4)

Since this is the CDF of the PRNG, we expect that half of the generated numbers will
be less than T0.5 where F (T0.5) = 0.5, a quarter of the generated numbers will be less than
T0.25 where F (T0.25) = 0.25, three quarters of the generated numbers will be less than
T0.75 where F (T0.75) = 0.75, etc. We’d like to find an equation that gives us Tu for any
F (Tu) = u, and we can do this with (4) by setting F (T ) = u and solving for T .

1− e−λTu = u(5)

−e−λTu = u− 1

e−λTu = 1− u

−λTu = ln(1− u)

Tu = −
1

λ
ln(1− u)(6)

The result (6) gives us the value Tu ∈ [0,∞) for any u ∈ [0, 1) where u is the fraction of
generated values are less than Tu.

If we use (6) to convert a sequence of numbers u ∈ [0, 1) that have come from a uniform-
distribution PRNG into a sequence of numbers Tu ∈ [0,∞), the resulting sequence of
numbers will be distributed such that u is the fraction of the T sequence’s values that are
less than Tu. This is exactly the distribution that we want for an exponential-distribution
PRNG, and so using (6) lets us generate exponentially distributed pseudorandom numbers.

4.2. Chopping the Tail. Since we plan to use the exponential-distribution PRNG to
generate a sequence of “interdeath” delays, there is a practical issue. It is quite unlikely
but still possible that such a PRNG occasionally will generate a very large delay, up to
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several days. To avoid the appearance of a counter stalling for days and appearing broken,
we plan on limiting the tail of the distribution.4

4.2.1. Lower and Upper Limits. Limiting the tail will reduce the mean, making T < 1
λ
.

In addition to being mathematically wrong, such a change will cause the counters to run
more quickly than planned. To compensate, we also must limit the distribution at the
other end of the mean. We define the distribution’s new limits as Ta = a

λ
and Tb = b

λ
,

where a

λ
< 1

λ
< b

λ
, and then compute the relationship between them using the definition of

the mean T over the interval [Ta, Tb] of a continuous distribution.

T =

∫

Tb

Ta

Tf(T )dT
∫

Tb

Ta

f(T )dT

Substituting in the PDF for the exponential distribution:

1

λ
=

∫ b

λ

a

λ

Tλe−λTdT

∫ b

λ

a

λ

λe−λT dT

Integrating:

1

λ
=

− e−λT (λT+1)
λ

∣

∣

∣

b

λ

T= a

λ

−e−λT |
b

λ

T= a

λ

1

λ
=

e−a(a+1)
λ

− e−b(b+1)
λ

−e−b + e−a

The relationship between a and b is independent of λ:

1 =
e−a(a+ 1)− e−b(b+ 1)

−e−b + e−a

And finally solve for the relationship between a and b:

−e−b + e−a = e−a(a+ 1)− e−b(b+ 1)

−e−b + e−a = ae−a + e−a − be−b − e−b

0 = ae−a − be−b

4The case described is quite unlikely. For example, if the a C-program uniform-distribution PRNG
generates RAND_MAX, then the value of T computed with (2) will be about 21 times larger than the mean T .
If the affected counter normally sums 21 deaths per day, then with this value from the PRNG it will sum
only one. The decision to limit the tail will depend on each counter’s expected daily total. A counter that
will sum 6 deaths per day ought to chop the tail since generating the maximum T would stall the counter
for three days. On the other hand, the effect on counters that sum thousands of deaths per day will not be
noticeable.
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ae−a = be−b(7)

a

ea
=

b

eb

aeb = bea(8)

Theses results verify our statements in Section 3.3.
Table 2 contains some useful limits, based on selected values of b. To compute column

a from column b in the table, we can use numerical methods, or we can use the Lambert
W function,5 which is defined as the function that returns z when given zez:

z = W (zez)(9)

For any value of b, we want to solve for a. Start with (7).

ae−a = be−b

−ae−a = −be−b

W (−ae−a) = W (−be−b)

Apply (9) with z = −a:

−a = W (−be−b)

a = −W (−be−b)(10)

Several computer algebra systems will evaluate an equation like (10) that contains the
Lambert W function. We used WolframAlpha.6 As an example, to obtain the value of a
for b = 2 we entered this expression. (Be aware that WolframAlpha uses square brackets
for function arguments.)

-LambertW[-2 Exp[-2]]

Values for the data of Table 2 were obtained using this WolframAlpha expression:

Table[{N[-LambertW[-b Exp[-b]]], b, N[1-Exp[LambertW[-b Exp[-b]]]],

N[1-Exp[-b],8]}, {b, {5, 6, 7, 8, 9, 10, 11, 12}}]

4.2.2. Upper Limit Only. The calculations for Table 3 derive the mean T over the interval
[0, Tb] of a continuous distribution.

T =

∫

Tb

0
Tf(T )dT

∫

Tb

0
f(T )dT

5https://en.wikipedia.org/wiki/Lambert_W_function
6https://www.wolframalpha.com
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Substituting in the PDF for the exponential distribution:

1

λ
=

∫ b

λ

0
Tmλe−mλTdT

∫ b

λ

0
mλe−mλT dT

Integrating:

1

λ
=

− e
−mλT (mλT+1)

mλ

∣

∣

∣

b

λ

T=0

−e−mλT |
b

λ

T=0

1

λ
=

− e−mb(mb+1)
mλ

+ 1
mλ

−e−mb + 1

The relationship between a and b is independent of λ:

1 =
− e

−mb(mb+1)
m

+ 1
m

−e−mb + 1

Simplify:

−e−mb + 1 = −
e−mb(mb+ 1)

m
+

1

m

m(−e−mb + 1) = −e−mb(mb+ 1) + 1

−me−mb +m = −mbe−mb − e−mb + 1

−m+memb = −mb− 1 + emb

emb(m− 1) +mb−m+ 1 = 0(11)

For a given b one must solve (11) for m numerically.


